Ecosystem

What's Supervisely? Sign in Create an account
Home › apps ›

ImgAug Studio

Visualize and build augmentation pipeline with ImgAug

apps neural network images object detection semantic segmentation instance segmentation classification nn tools augmentation data operations
Get in Supervisely View at GitHub
Readme Releases 16

Details

  • Module ID70
  • Released on2021-04-15 08:49:02
  • Last updated2022-08-09 09:32:46
  • Docker imagesupervisely/base-py-sdk:6.35.0

Requirements

  • Instance version6.4.57
  • Needs GPUNo

Resources

  • Repository
  • Report an issue
  • Slack community
  • Documentation

Similar

 1K+

Apply NN to Images Project

NN Inference on images in project or dataset

 1K+

NN Image Labeling

Use deployed neural network in labeling interface

 366

Flying objects

Generate synthetic data: flying foregrounds on top of backgrounds

 35

Explore data with embeddings

Calculate and visualize embeddings

 2K+

Train YOLOv5

Dashboard to configure and monitor training

Drop us a line at
hello@supervise.ly
Labeling tools
  • Image labeling
  • Video labeling
  • LiDAR labeling
  • DICOM labeling
Labeling automation
  • AI-assisted labeling
  • Custom labeling UI
  • Labeling services
Data and users
  • Data management
  • User collaboration
  • Quality assurance
  • Security & permissions
Neural networks
  • Train, serve & apply
  • Query and transform
  • Visualize, analyze & improve
  • Generate synthetic data
Platform
  • About ecosystem
  • What's a Supervisely App?
  • API and SDK automation
  • Feature comparison
For business
  • Enterprise edition
  • Pricing
  • Partnership
  • Contact us
Company
  • About us
  • Terms of Service
  • Privacy Policy
Resources
  • Developer docs
  • Community forum
  • Slack chat
  • Ecosystem index
© 2023 Supervisely OÜ. All rights reserved.
Built with icons8, freepik, slidesgo.